Analytical Plasma Operations with on-Line Linux Os
APOLLO is designed to take your plasma parameters and give you the proper characteristic values of your plasma and the equation used to calculate it. Please enter your plasma parameters in the boxes below: \(n_e\) and \(n_i\) number density, \(T_e\) and \(T_i\) is plasma temperature, \(A_i\) is the nucleon number of the ion, \(Z_i\) is atomic number of the ion, \(Z_{eff}\) is the charge state, \(B\) is external magnetic field, \(E\) is the external electric field, and \(K\) is the wave number. All values should be in SI units. \(Z_{eff}\ \mathrm{and}\ n_e\) are related by \(n_e = n_i \cdot Z_{eff}.\) If this does not hold true for the entered values, the program will correct the entered values.
Ion properties
\(\large{n_i}\)
\(\large{m^{-3}}\)
\(\large{T_i}\)
\(\large{eV}\)
\(\large{A_i}\)
\(\large{}\)
\(\large{Z_i}\)
\(\large{}\)
\(\large{Z_{eff}}\)
\(\large{}\)
Electron properties
\(\large{n_e}\)
\(\large{m^{-3}}\)
\(\large{T_e}\)
\(\large{eV}\)
Background properties
\(\large{B}\)
\(\large{T}\)
\(\large{E}\)
\(\large{N/C}\)
\(\large{K}\)
\(\large{m^{-1}}\)
\(\omega_{ce}=\)
1.76e+11
\(rad/s\)
Electron gyrofrequency
\(\omega_{ce}=\frac{e B}{m_{e}}\)
\(\omega_{ci}=\)
9.58e+07
\(rad/s\)
Ion gyrofrequency
\(\omega_{ci}=\frac{Z_{eff} e B}{m_{i}}\)
\(\omega_{pe}=\)
5.64e+01
\(rad/s\)
Electron plasma frequency
\(\omega_{pe}=\sqrt{\frac{n_{e}e^{2}}{\epsilon_{0} m_{e}}}\)
\(\omega_{pi}=\)
1.32e+00
\(rad/s\)
Ion plasma frequency
\(\omega_{pi}=\sqrt{\frac{n_{i}Z_{eff}^{2}e^{2}}{\epsilon_{0}m_{i}}}\)
\(\nu_{T_{e}}=\)
4.19e+05
\(Hz\)
Electron trapping rate
\(\nu_{T_{e}}=\sqrt{\frac{eKE}{m_{e}}}\)
\(\nu_{T_{i}}=\)
9.79e+03
\(Hz\)
Ion trapping rate
\(\nu_{T_{i}}=\sqrt{\frac{Z_{eff}eKE}{m_{i}}}\)
\(\nu_{ee}=\)
6.15e-11
\(Hz\)
Electron collision frequency
\(\nu_{ee}=\frac{1}{3\sqrt{\pi}}n_{e}\left(\frac{Z_{eff}e^{2}}{4\pi \epsilon_{0}}\right)^{2}\frac{4\pi}{m_{e}^{1/2}(kT_{e})^{3/2}}\mathrm{ln}\Lambda_{ee}\)
\(\nu_{ei}=\)
8.69e-11
\(Hz\)
Electron on ion collision frequency
\(\nu_{ei}=\frac{2}{3\sqrt{2\pi}}n_{i}\left(\frac{Z_{eff}e^{2}}{4\pi \epsilon_{0}}\right)^{2}\frac{4\pi}{m_{e}^{1/2}(kT_{e})^{3/2}}\mathrm{ln}\Lambda_{ei}\)
\(\nu_{ie}=\)
4.73e-14
\(Hz\)
Ion on electron collision frequency
\(\nu_{ie}=\frac{2}{3\sqrt{2\pi}}n_{e}\left(\frac{Z_{eff}e^{2}}{4\pi \epsilon_{0}}\right)^{2}\frac{4\pi m_{e}^{1/2}}{m_{i}(kT_{e})^{3/2}}\mathrm{ln}\Lambda_{ie}\)
\(\nu_{ii}=\)
1.42e-12
\(Hz\)
Ion collision frequency
\(\nu_{ii}=\frac{1}{3\sqrt{\pi}}n_{i}\left(\frac{(Z_{eff}e)^{2}}{4\pi \epsilon_{0}}\right)^{2}\frac{4\pi}{m_{i}^{1/2}(kT_{i})^{3/2}}\mathrm{ln}\Lambda_{ii}\)